Spectrum Sensing Security in Cognitive Radio Networks
نویسندگان
چکیده
Title: Spectrum Sensing Security in Cognitive Radio Networks Awais Khawar, Master of Science, 2010 Supervisor: Dr. Charles Clancy Department of Electrical and Computer Engineering This thesis explores the use of unsupervised machine learning for spectrum sensing in cognitive radio (CR) networks from a security perspective. CR is an enabling technology for dynamic spectrum access (DSA) because of a CR’s ability to reconfigure itself in a smart way. CR can adapt and use unoccupied spectrum with the help of spectrum sensing and DSA. DSA is an efficient way to dynamically allocate white spaces (unutilized spectrum) to other CR users in order to tackle the spectrum scarcity problem and improve spectral efficiency. So far various techniques have been developed to efficiently detect and classify signals in a DSA environment. Neural network techniques, especially those using unsupervised learning have some key advantages over other methods mainly because of the fact that minimal preconfiguration is required to sense the spectrum. However, recent results have shown some possible security vulnerabilities, which can be exploited by adversarial users to gain unrestricted access to spectrum by fooling signal classifiers. It is very important to address these new classes of security threats and challenges in order to make CR a long-term commercially viable concept. This thesis identifies some key security vulnerabilities when unsupervised machine learning is used for spectrum sensing and also proposes mitigation techniques to counter the security threats. The simulation work demonstrates the ability of malicious user to manipulate signals in such a way to confuse signal classifier. The signal classifier is forced by the malicious user to draw incorrect decision boundaries by presenting signal features which are akin to a primary user. Hence, a malicious user is able to classify itself as a primary user and thus gains unrivaled access to the spectrum. First, performance of various classification algorithms are evaluated. K-means and weighted classification algorithms are selected because of their robustness against proposed attacks as compared to other classification algorithm. Second, connection attack, point cluster attack, and random noise attack are shown to have an adverse effect on classification algorithms. In the end, some mitigation techniques are proposed to counter the effect of these attacks. Spectrum Sensing Security in Cognitive Radio Networks by Awais Khawar Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Master of Science 2010 Advisory Committee: Professor Charles Clancy, Chair/Advisor Professor Christopher Davis Professor Charles Silio c © Copyright by Awais Khawar 2010
منابع مشابه
Secure Collaborative Spectrum Sensing in the Presence of Primary User Emulation Attack in Cognitive Radio Networks
Collaborative Spectrum Sensing (CSS) is an effective approach to improve the detection performance in Cognitive Radio (CR) networks. Inherent characteristics of the CR have imposed some additional security threats to the networks. One of the common threats is Primary User Emulation Attack (PUEA). In PUEA, some malicious users try to imitate primary signal characteristics and defraud the CR user...
متن کاملSpectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation
Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...
متن کاملAttack-Aware Cooperative Spectrum Sensing in Cognitive Radio Networks under Byzantine Attack
Cooperative Spectrum Sensing (CSS) is an effective approach to overcome the impact of multi-path fading and shadowing issues. The reliability of CSS can be severely degraded under Byzantine attack, which may be caused by either malfunctioning sensing terminals or malicious nodes. Almost, the previous studies have not analyzed and considered the attack in their models. The present study introduc...
متن کاملInvestigation of Always Present and Spectrum Sensing based Incumbent Emulators
Cognitive radio (CR) technology has been suggested for effective use of spectral resources. Spectrum sensing is one of the main operations of CR users to identify the vacant frequency bands. Cooperative spectrum sensing (CSS) is used to increase the performance of CR networks by providing spatial diversity. The accuracy of spectrum sensing is the most important challenge in the CSS process sinc...
متن کاملPrimary User Emulation Attack in Cognitive Radio Networks: A Survey
Cognitive radio is a promising technology aiming to solve the spectrum scarcity problem by allocating the spectrum dynamically to unlicensed users. It uses the free spectrum bands which are not being used by the licensed users without causing interference to the incumbent transmission. So, spectrum sensing is the essential mechanism on which the entire communication depends. If the spectrum sen...
متن کاملSpectrum Assignment in Cognitive Radio Networks Using Fuzzy Logic Empowered Ants
The prevalent communications networks suffer from lack of spectrum and spectrum inefficiency. This has motivated researchers to develop cognitive radio (CR) as a smart and dynamic radio access promised solution. A major challenge to this new technology is how to make fair assignment of available spectrum to unlicensed users, particularly for smart grids communication. This paper introduces an i...
متن کامل